Technical Data Sheet

Infrared Remote-control Receiver Module

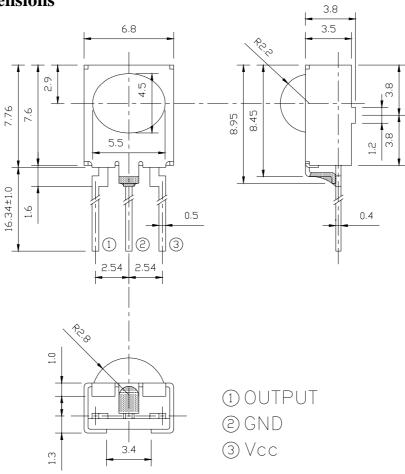
IRM-8601S-2

Features

- · High protection ability against EMI.
- Oval lens to improve the receive angles.
- Line-up for various center carrier frequencies.
- Low voltage and low power consumption.
- High immunity against ambient light.
- Photodiode with integrated circuit.
- TTL and CMOS compatibility.
- Long reception distance.
- · High sensitivity.

The device is a miniature type infrared remote control system receiver which has been developed and designed by utilizing the most updated IC technology. The PIN diode and preamplifier are assembled on lead frame, the epoxy package is designed as an IR filter. The demodulated output signal can directly be decoded by a microprocessor.

Applications


- 1. Optical switch
- 2. Light detecting portion of remote control
- AV instruments such as Audio, TV, VCR, CD, MD, etc.
- Home appliances such as Air-conditioner, Fan, etc.
- The other equipments with wireless remote control.
- CATV set top boxes
- Multi-media Equipment

Device Selection Guide

PART	MATERIAL	COLOR
Chip	Silicon	
Metal can	Tinplate	Silver-white
Package	Ероху	Black

Package Dimensions

Notes: 1.All dimensions are in millimeters.

2.Tolerances unless dimensions ±0.3mm.

Absolute Maximum Ratings (Ta=25°C)

		•		
Parameter	Symbol	Rating	Unit	Notice
Supply Voltage	Vcc	0~6	V	
Operating Temperature	Topr	-25 ~ +85	$^{\circ}\! \mathbb{C}$	
Storage Temperature	Tstg	-40 ~ +85	$^{\circ}\!\mathbb{C}$	
Soldering Temperature	Tsol	260	$^{\circ}\! \mathbb{C}$	4mm from mold body less than 10 seconds

Recommended Operating Condition

Supply Voltage Rating: Vcc 4.5V to 5.5V

Electro-Optical Characteristics (Ta=25 $^{\circ}$ C, and Vcc=5 V)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Condition	
Consumption Current	Icc			3	mA	No signal input	
B.P.F Center Frequency	Fo		36		KHz		
Peak Wavelength	λp		940		nm		
Reception Distance	L_0	8			m		
	L ₄₅	4					
Half Angle(Horizontal)	Θ_{h}		45		deg	At the ray axis *1	
Half Angle(Vertical)	$\Theta_{\rm v}$		45		deg		
High Level Pulse Width	T_{H}	400		800	μ s	At the ray axis	
Low Level Pulse Width	$T_{ m L}$	400		800	μ s	*2	
High Level Output Voltage	V _H	4.5			V		
Low Level Output Voltage	$V_{\rm L}$		0.2	0.5	V		

Notes:

^{*1:}The ray receiving surface at a vertex and relation to the ray axis in the range of θ = 0° and θ =45°.

^{*2:}A range from 30cm to the arrival distance. Average value of 50 pulses.

Test Method:

The specified electro-optical characteristics is satisfied under the following Conditions at the controllable distance.

①Measurement place

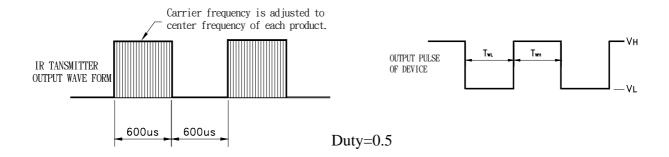
A place that is nothing of extreme light reflected in the room.

②External light

Project the light of ordinary white fluorescent lamps which are not high Frequency lamps and must be less then 10 Lux at the module surface. ($Ee \le 10Lux$)

3Standard transmitter

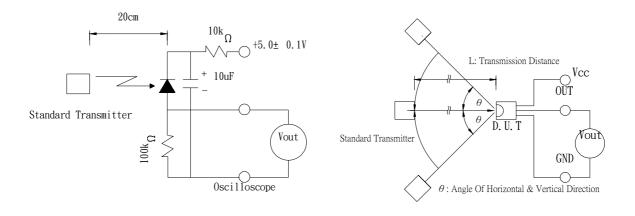
A transmitter whose output is so adjusted as to **Vo=400mVp-p** and the output Wave form shown in Fig.-1.According to the measurement method shown in Fig.-2 the standard transmitter is specified.


However , the infrared photodiode to be used for the transmitter should be $\lambda p=940$ nm, $\Delta \lambda=50$ nm. Also, photodiode is used of PD438B(Vr=5V). (Standard light / Light source temperature 2856°K).

Measuring system

According to the measuring system shown in Fig.-3

Fig.-1 Transmitter Wave Form


D.U.T output Pulse

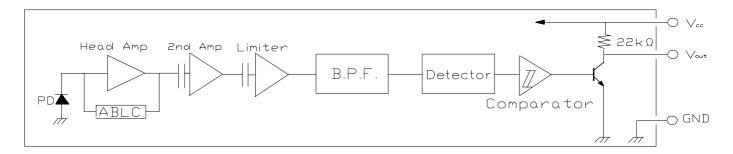
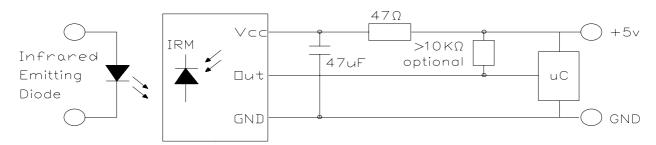

<u>IRM-8601S-2</u>

Fig.-2 Measuring Method


Fig.-3 Measuring System

Block Diagram:

Application Circuit:

RC Filter should be connected closely between Vcc pin and GND pin.

Typical Electro-Optical Characteristics Curves

Fig.-4 Relative Spectral Sensitivity vs.

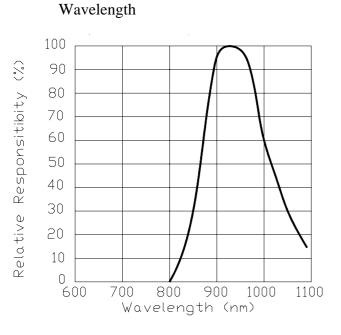


Fig.-5 Relative Transmission Distance vs.

Direction

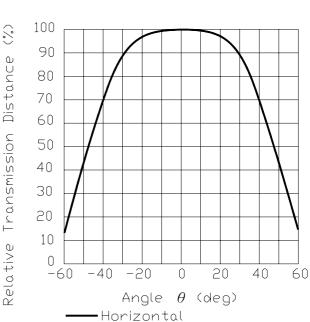
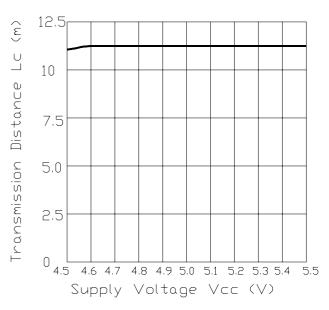
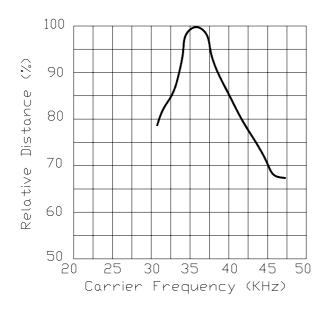
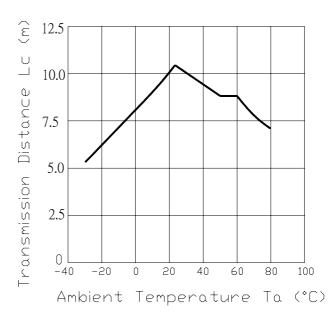



Fig.-6 Output Pulse Length vs. Arrival Distance Fig.-7 Arrival Distance vs. Supply Voltage





Typical Electro-Optical Characteristics Curves

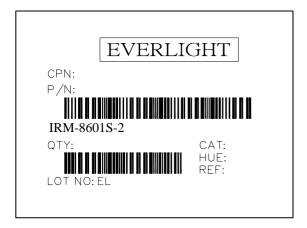
Fig.-8 Relative Transmission Distance vs. Center Carrier Frequency

Fig.-9 Arrival Distance vs. Ambient Temperature

Reliability Test Item And Condition

The reliability of products shall be satisfied with items listed below.

Confidence level: 90%


LTPD: 10%

Test Items	Test Conditions	Failure Judgement Criteria	Samples(n) Defective(c)
Temperature cycle	1 cycle -25° C \longleftrightarrow $+85^{\circ}$ C $(30\text{min})(5\text{min})(30\text{min})$ 300 cycle test		n=22,c=0
High temperature test	Temp: +85°C Vcc:5V 1000hrs	$egin{array}{ccc} L_0 &\leq & Lx0.8 \ L_{45} &\leq & Lx0.8 \end{array}$	n=22,c=0
Low temperature storage	Temp: -40°C 1000hrs	L: Lower	n=22,c=0
High temperature High humidity	Ta: 85°C,RH:85% 1000hrs	specification limit	n=22,c=0
Solder heat	Temp: 260±5°C 10sec 4mm From the bottom of the package.		n=22,c=0

Packing Quantity Specification

- 1. 1000 PCS/1Box
- 2. 10 Boxes/1Carton

Label Form Specification

CPN: Customer's Production Number

P/N : Production Number QTY: Packing Quantity

CAT: Ranks

HUE: Peak Wavelength

REF: Reference

LOT No: Lot Number